外微分形式 | {Differential Forms} [1]
从今天开始,会不定期的贴出比较完整的外微分形式(exterior differential forms)的大纲。大部分只是简单的从书本中摘出来的,以便以后快速回想和查阅使用。初学者可能会犯很多错误,强烈要求指正。
所读书本为Harley Flanders的书,Google Books链接在文末给出。
第一部分:http://multiverse.lamost.org/blog/?p=2091
第二部分:http://multiverse.lamost.org/blog/?p=2167
第三部分:http://multiverse.lamost.org/blog/?p=2173
Contents:
Chapter 1 Why forms?
Chapter 2 Exterior Algebra
Orientation of the integration, determined by the argument.
More simple for some calculation. I always encounter calculations hard to be solved only with tensor analysis. That is why I started to learn a little about exterior differential forms.
…
1. Set up the space we will work on.
\mathcal{R}: field of real numbers.
\mathcal{L}: n dimensional space over \mathcal{R} with elements \alpha, \beta, \dots
\wedge^p \mathcal{L}: space of p-vectors on \mathcal{L}. This will be made clear later.
2. Basic rules for basis.
Linear: (a \alpha +b \beta)\wedge \alpha_2\wedge\cdots\wedge\alpha_p = a(\alpha\wedge\alpha_2\wedge\cdots\wedge\alpha_p)+b(\beta\wedge\alpha_2\wedge\cdots\wedge\alpha_p)
Any of the terms repeated in the expression \alpha_1\wedge\alpha_2\wedge\cdots\wedge\alpha_p leads the whole to 0.
Interchanging between two terms in \alpha_1\wedge\alpha_2\wedge\cdots\wedge\alpha_p changes the whole’s sign.
3. Properties of p-vector space
Function g can be defined on \mathcal{L} and mapping f on \wedge^p \mathcal{L}, satisfying f(\alpha_1\wedge\cdots\wedge\alpha_p)=g(\alpha_1, \cdots, \alpha_p).
4. Determinants
Function g_A: \bigotimes^n \mathcal{L} \rightarrow \wedge^n \mathcal{L} and f_A: \wedge^n\mathcal{L}\rightarrow\wedge^n\mathcal{L} can be related by
\begin{equation}
f_A(\alpha_1\wedge\cdots\wedge\alpha_p)=g_A(\alpha_1,\cdots, \alpha_p)\equiv A\alpha_1\wedge\cdots\wedge A\alpha_p
\end{equation}
Since only one kind of transformation the linear function f_A has, the only possible expression for f_A is |A|\alpha_1\wedge\cdots\wedge\alpha_p, where |A| is a scalar. Define \wedge^p(\alpha_1\wedge\cdots\wedge\alpha_p)\equiv A\alpha_1\wedge\cdots\wedge A\alpha_p.
Another way of looking at g_A is A\alpha_1\wedge\cdots\wedge A\alpha_p = |a^i_j|\alpha_1\wedge\cdots\wedge\alpha_p, if we have A\sigma^i=\Sigma a^i_j \sigma^j.
Comparing the two understandings, we find |A|=|a^i_j|. Here |A| is the determinant.
5. Exterior products
Basic rules: (\mu and \lambda are p vector and q vector respectively)
a. \mu\wedge\lambda distribuative
b. associative
c. \mu\wedge\lambda=(-1)^{pq}\lambda\wedge\mu
6. Linear transformations
Linear spaces: \mathcal{M},\mathcal{N} with dimension m and n respectively. The basis of \mathcal{M} is \sigma^i.
Define a linear transformation A : \mathcal M \rightarrow \mathcal N, which is
\begin{equation}
(\alpha_1, \cdots, \alpha_p) \rightarrow A\alpha_1\wedge\cdots\wedge A\alpha_p .
\end{equation}
This is a map from \bigotimes^p\mathcal M to \wedge^p \mathcal N.
One would find a useful linear transformation can be denoted \wedge^p A : \wedge^p \mathcal M\rightarrow \wedge^p\mathcal N.
Note that \wedge^p A has matrix representation.
7. Inner product spaces
Basic rules
a. Linear in each variable
b. Symmetric: (\alpha, \beta)=(\beta, \alpha)
c. Nondegenerate: if for fiexed \alpha, (\alpha,\beta)=0 for all \beta, then \alpha=0.
Properties:
a. Each inner product space \mathcal L has an orthonormal basis.
b. f: linear function on \mathcal L. Then there is a vector \beta in \mathcal L such that f(\alpha)=(\alpha, \beta). (This property is very important.)
8. Inner product of p-vectors
Vector space \mathcal L has inner product (\alpha,\beta) on it. Define (\lambda,\mu)=|(\alpha_i,\beta_j)| on (\wedge^p \mathcal L)\bigotimes (\wedge^p\mathcal L), in which \lambda=\alpha_1\wedge\cdots\wedge\alpha_p, \mu=\beta_1\wedge\cdots\wedge\beta_p.
9. Hodge star
Linear transformation on \wedge^p\mathcal L\rightarrow \wedge^{n-p}\mathcal L. (Depends on inner product and orientation. Orientation of \mathcal L which will remain fixed means we hake on basis for \mathcal L and only consider other basis which are expressed in terms of this one by a matrix with positive determinant.)
\begin{equation}
\lambda\wedge\mu=(*\lambda, \mu)\sigma (=f_\lambda (\mu)\sigma)
\end{equation}
here * map is a linear one \wedge^p\mathcal L\rightarrow \wedge^{n-p}\mathcal L.
注: f_\lambda(\mu)把\mu从\wedge^p\mathcal L映射到\wedge^n\mathcal L。\lambda是\wedge^p\mathcal L上,\mu是\wedge^{n-p}\mathcal L上的,为了定义出这个线性的f_\lambda(\mu),想到inner product,这样需要把\lambda,\mu放在同样的space中,故通过*来把\lambda从\wedge^p\mathcal L映射到\wedge^{n-p}\mathcal L上。
Reference:
Differential forms with applications to the physical sciences
By By Harley Flanders
最近评论