Special Relativity

Conventions

Metric in special relativity

\[\begin{split}\begin{equation}\eta_{\mu\nu}=\left(\begin{matrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{matrix}\right)\end{equation}\end{split}\]

Quantities and Operations

d’Alembertian

d’Alembert operator, or wave operator, is the Lapace operator in Minkowski space. [1]

\[\Box\equiv \partial _ \mu\partial^\nu = \eta _{\mu\nu}\partial^\mu \partial^\nu\]

In the usual {t,x,y,z} natural orthonormal basis,

\[\begin{split}\begin{eqnarray} \Box&=&-\partial_t^2+\partial_x^2+\partial_y^2+\partial_z^2 \\ &=&-\partial_t^2+\Delta^2 \\ &=&-\partial_t^2+\nabla \end{eqnarray}\end{split}\]
On wiki [2] , they give some applications to it.
  • klein-Gordon equation \((\Box+m^2)\phi=0\)
  • wave equation for electromagnetic field in vacuum: For the electromagnetic four-potential $Box A^mu=0$footnote{Gauge}
  • wave equation for small vibrations \(\Box_c u(t,x)=0\rightarrow u_{tt}-c^2 u_{xx}=0\)

Footnotes

[1]Actually, there are more general definations for Lapacian, which includes this d’Alembertian of course.
[2]wiki:D’Alembert_operator