Open Metric
Science, Fiction and Me

Today I Learned

Interesting Facts on Eigenstates

The eigenstates of a matrix

\[\begin{pmatrix} E_1 & 0 \\ 0 & E_1 \end{pmatrix}\]

are

\[\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ 0 \end{pmatrix}.\]

However if we put in two real off-diagonal elements

\[\begin{pmatrix} E_1 & \epsilon \\ \epsilon & E_1 \end{pmatrix},\]

the eigenstates becomes

\[\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix}.\]

If we are talking about real matrix,

\[\begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix}\]

even though it is true that the eigenstates are

\[\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ 0 \end{pmatrix},\]

the eigenstates are not that simple if we add in off-diagonal elements that make sure the matrix is still Hermitian.

In fact the eigenstates for the eigenequation

\[\begin{pmatrix} E_1 & \epsilon \\ \epsilon^* & E_2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix},\]

is given by

\[(E_1-E_2) a b + \epsilon b^2 - \epsilon^* a^2 = 0,\]

where $b^2 = b \cdot b$ is not the modulus squared.

A Random #TIL# for You


Most technical TILs will be updated at datumorphism.leima.is/til

By OctoMiao

Last updated