JaxEdit
Local Drive
SkyDrive
Source
noname.tex
\documentclass{beamer} \newtheorem{thm}{Theorem} \begin{document} \title{Online LaTeX Editor} \author{JaxEdit Project} \date{July 3rd, 2012} \maketitle \tableofcontents \section[Introduction]{Long Introduction} \begin{frame} We have the Cauchy-Schwarz inequality: \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] where $a_k$ and $b_k$ are real numbers, for any $k$. \end{frame} \section{Calculus} \begin{frame} \begin{thm} If we have the following conditions: \begin{enumerate} \item $f(x)$ is continuous on $[a,b]$, \item $f(x)$ is derivable on $(a,b)$, \item $f(a)$ and $f(b)$ have the same value, \end{enumerate} Then there exists $\xi\in(a,b)$ such that $f'(\xi)=0$. \end{thm} \end{frame} \end{document}
Preview
Current folder:
Go Up
Loading...
save file as:
.txt