Stellar Energy Losses ========================== Key: 1. Cooling speed of white dwarfs, and neutron stars 2. "Delay of helium ignition in low mass red giants"[Raffelt]_ 3. Helium burning lifetime Evolution of Stars ---------------------------- .. admonition:: Videos :class: note Here is website that provides nice videos of evoution on HR digram, http://rainman.astro.illinois.edu/ddr/stellar/beginner.html Main Sequence ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. Formation: gas clound condense due to EM radiation. .. admonition:: Negative Specific Heat :class: note Gravitation dominated systems usually have negative specific heat. As the volume contracts, the star would be heated up, since specific heat is defined as .. math:: C = \frac{\delta Q}{dT}. 2. Pressure, angular momentum, magnetic fields 3. IMF: [0.08, 100] :math:`\mathscr M_\odot` .. admonition:: Salpeter's IMF :class: note .. math:: \frac{dN}{d\mathscr M} \propto ( \mathscr M/\mathscr M_{\odot} )^{-1.35} .. figure:: assets/astrophysics/stellar-energy-losses/salpeter-imf.png :align: center Salpeter's IMF Notice that :math:`\int x^{-n} dx = C + \frac{ x^{1-n} }{1-n}`. 4. First stars: 1. mass fraction of hydrogen :math:`X\sim 0.75` 2. mass fraction of helium :math:`Y\sim 0.25` Sun: metallicity: :math:`Z\sim 0.02` 5. Mass loss: 1. stellar wind 2. supernova explosions 6. Limit of white dwarfs: 1.4 solar masses 7. Disk of spiral galaxies: active death and birth of stars 1. Spiral galaxies have old halo stars, globular clusters. 2. Milky Way: 150 of them, each with :math:`10^{6}` stars. 3. Gravitational escape velocity of them: :math:`10\mathrm{km s^{-1}}` .. admonition:: Escape velocity :class: warning From where? 4. Supernova explosion ejects at :math:`10^{3}\mathrm{km s^{-1}}`. 5. Supernova sweep whole globular cluster clean of gas. .. admonition:: Ah? :class: warning How? 6. No star formation 7. Good for stellar evolution research. 8. Viral theorem, negative specific heat -> contraction -> nuclear burning 1. determined by mass 2. HR diagram: :math:`\log ( L/L_\odot )` ~ :math:`\log ( T_{\mathrm{eff}}/K )`, or luminosity ~ surface temperature, scaled with solar quantities 3. Most of the time the stars stay on the diagram 4. Sun: 1Gyr life, half gone 5. :math:`L\sim \mathscr M^3` 6. :math:`\mathscr M/\mathscr M_\odot \leq 0.7 - 0.8` stars are still alive 7. Globular cluster has turnoff: compare Fig. 2.2 and Fig. 2.3 9. MS mass-radius relation: :math:`R \sim \mathscr M^\xi`, for :math:`\mathscr M < \mathscr M_\odot`, :math:`\xi \sim 0.8`, for :math:`\mathscr M > \mathscr M_\odot`, :math:`\xi \sim 0.57`; The difference comes from the convective envolope. [rbc3]_ Red Giant ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. Hydrogen consumed in center 2. Next step depends on the mass of the stars 3. For :math:`\mathscr M \leq 2 \mathscr M_\odot` 1. New configuration forms from helium ashes in the center 2. Outer region expand -> Surface temperature drops -> Redder: red giant .. admonition:: Why :class: warning According to Stefan-Boltzman law? .. math:: j = \sigma T^4 3. There exists a hydrogen burning shell -> Dumps He into core 4. He core is dense -> electrons degenerate -> mass-radius relation: :math:`R\sim \mathscr M^{-1/3}` -> Mass of core increas leads to decrease in radius 5. Core gravitation: :math:`\Phi_c \sim - G \mathscr M_c / R_c \sim \mathscr M^{4/3}` 6. Larger core mass -> Hotter hydrogen -> faster burning of hydrogen References and Notes ----------------------- .. [Raffelt] Stars as Laboratories for Fundamental Physics .. [rbc3] http://personal.psu.edu/rbc3/A534/lec18.pdf